National Standard for a Procedure Dataset including a Clinical Document Architecture specification

November 2016
About the Health Information and Quality Authority

The Health Information and Quality Authority (HIQA) is an independent authority established to drive high quality and safe care for people using our health and social care services in Ireland. HIQA’s role is to develop standards, inspect and review health and social care services and support informed decisions on how services are delivered.

HIQA aims to safeguard people and improve the safety and quality of health and social care services across its full range of functions.

HIQA’s mandate to date extends across a specified range of public, private and voluntary sector services. Reporting to the Minister for Health and the Minister for Children and Youth Affairs, HIQA has statutory responsibility for:

- **Setting Standards for Health and Social Services** – Developing person-centred standards, based on evidence and best international practice, for health and social care services in Ireland.
- **Regulation** – Registering and inspecting designated centres.
- **Monitoring Children’s Services** – Monitoring and inspecting children’s social services.
- **Monitoring Healthcare Safety and Quality** – Monitoring the safety and quality of health services and investigating as necessary serious concerns about the health and welfare of people who use these services.
- **Health Technology Assessment** – Providing advice that enables the best outcome for people who use our health service and the best use of resources by evaluating the clinical effectiveness and cost-effectiveness of drugs, equipment, diagnostic techniques and health promotion and protection activities.
- **Health Information** – Advising on the efficient and secure collection and sharing of health information, setting standards, evaluating information resources and publishing information about the delivery and performance of Ireland’s health and social care services.
Overview of Health Information function

Healthcare is information-intensive, generating huge volumes of data every day. Health and social care workers spend a significant amount of their time handling information, collecting it, looking for it and storing it. It is therefore imperative that information is managed in the most effective way possible in order to ensure a high-quality, safe service.

Safe, reliable healthcare depends on access to, and the use of, information that is accurate, valid, reliable, timely, relevant, legible and complete. For example, when giving a patient a drug, a nurse needs to be sure that they are administering the appropriate dose of the correct drug to the right patient and that the patient is not allergic to it. Similarly, lack of up-to-date information can lead to the unnecessary duplication of tests – if critical diagnostic results are missing or overlooked, tests have to be repeated unnecessarily and, at best, appropriate treatment is delayed or at worst not given.

In addition, health information has a key role to play in healthcare planning decisions – where to locate a new service, whether or not to introduce a new national screening programme and decisions on best value for money in health and social care provision.

Under section (8)(1)(k) of the Health Act 2007, the Health Information and Quality Authority (HIQA) has responsibility for setting standards for all aspects of health information and monitoring compliance with those standards. In addition, under section 8(1)(j), HIQA is charged with evaluating the quality of the information available on health and social care and making recommendations in relation to improving the quality and filling in gaps where information is needed but is not currently available.

Information and communications technology (ICT) has a critical role to play in ensuring that information to drive quality and safety in health and social care
settings is available when and where it is required. For example, it can generate alerts in the event that a patient is prescribed medication to which they are allergic. Further to this, it can support a much faster, more reliable and safer referral system between the patient’s general practitioner (GP) and hospitals.

Although there are a number of examples of good practice, the current ICT infrastructure in Ireland’s health and social care sector is highly fragmented with major gaps and silos of information which prevents the safe, effective, transfer of information. This results in service users being asked to provide the same information on multiple occasions.

Information can be lost, documentation is poor, and there is over-reliance on memory. Equally, those responsible for planning our services experience great difficulty in bringing together information in order to make informed decisions. Variability in practice leads to variability in outcomes and cost of care. Furthermore, we are all being encouraged to take more responsibility for our own health and wellbeing, yet it can be very difficult to find consistent, understandable and trustworthy information on which to base our decisions.

As a result of these deficiencies, there is a clear and pressing need to develop a coherent and integrated approach to health information, based on standards and international best practice. A robust health information environment will allow all stakeholders, the general public, patients and service users, health professionals and policy makers to make choices or decisions based on the best available information. This is a fundamental requirement for a high reliability healthcare system.

Through its health information function, HIQA is addressing these issues and working to ensure that high quality health and social care information is available to support the delivery, planning and monitoring of services. One of the areas currently being addressed by the Health Information Directorate is the area of developing
common Clinical Document Architecture (CDA) templates\(^1\) that can be used in national clinical documents. In order to electronically exchange clinical documents between healthcare providers, HIQA in conjunction with stakeholders developed a procedure template standard which can be used throughout electronic documents using an international standard known as the Health Level 7 (HL7) Clinical Document Architecture (CDA) standard. This standard will define the HL7 CDA template for procedures.

\(^1\) A CDA template defines additional syntax rules that constrain the overall CDA syntax and semantics, to more tightly define the rules for a specific kind of CDA document (or portion of a CDA document). http://www.cdapro.com/know/25110
Table of Contents

1. Introduction... 9
2. Background.. 11
3. Purpose... 12
4. Benefits.. 12
5. Methodology .. 13
6. Model for procedures ... 15
7. Dataset for procedures ... 16
Appendix 1. Clinical Document Architecture Overview ... 26
Appendix 2. Technical specification ... 31
Appendix 3. Statement of Outcomes ... 33
Appendix 4. HL7 v3 Data Type ... 36
Appendix 5. Value sets ... 39
1. Introduction

Safe and reliable health and social care depends on access to, and use of, information that is accurate, valid, reliable, timely, relevant, legible and complete. The development of patient summaries, such as discharge summaries, eReferrals and other document types like ePrescription documents, are outlined in the national eHealth strategy (2013) as one of the key priority areas to support the implementation of eHealth initiatives, in particular an electronic health record (EHR) for Ireland.

Currently there is no standardised national dataset to describe a procedure that can be used in patient summaries. The development of a national standard for procedures can help to standardise how a procedure is recorded and can facilitate easier sharing of information within and between health and social care services. The national standard for procedures is part of a suite of standards that HIQA has developed to support the standardisation of national patient summaries.

Communication between eHealth systems including electronic health records (EHR) need to be standardised in both structure and content to achieve the safe exchange of information that can be used in a meaningful way.

One of the critical success factors for the delivery of eHealth systems is a commitment to employ interoperability standards. While a number of countries have set out to establish a national EHR as the ultimate goal of their eHealth strategies, the emphasis for many has now shifted towards focusing on the development of eHealth building blocks, including interoperability standards. Some of the different types of interoperability standards that enable semantic interoperability include

2 (Electronic Health) "eHealth can benefit citizens, patients, health and care professionals but also health organisations and public authorities. eHealth - when applied effectively - delivers more personalised ‘citizen-centric’ healthcare, which is more targeted, effective and efficient and helps reduce errors, as well as the length of hospitalisation. It facilitates socio-economic inclusion and equality, quality of life and patient empowerment through greater transparency, access to services and information and the use of social media for health"… European Union eHealth Action Plan 2012-2020.

3 An electronic health record (EHR) is a longitudinal record of patient health information across multiple care settings.
National Standard for a Procedure Dataset including a Clinical Document Architecture specification

Health Information and Quality Authority

Messaging, terminology and data definition standards for the exchange of data such as the:

- Health Level Seven (HL7) v2.x messaging standards.
- Clinical terminologies such as SNOMED CT for coding clinical information.
- openEHR archetypes that define datasets that represent medical concepts such as a procedure, adverse reaction and diagnosis.
- HL7 Clinical Document Architecture (HL7 CDA) standards for sharing clinical documents.

In the Irish context, many reports and strategies have highlighted the need for a national EHR including the Commission for Patient Safety and Quality Assurance (1) and the eHealth Strategy for Ireland (2013) (2). The Health Service Executive (HSE) established the Office of the Chief Information Officer which is responsible for implementing Ireland’s eHealth Strategy. The Office of the Chief Information Officer is responsible for the delivery of technology to support healthcare across Ireland and have published the Knowledge and Information Strategy (2015) (3) in this regard.

The development of patient summary records, that is to say, summaries of key clinical information that can be created and consumed by electronic health record systems (or other clinical information systems) is also highlighted in the eHealth Strategy as one of the key priority projects to enable the implementation of eHealth in Ireland. A patient summary includes the most relevant patient information needed by a clinician in order to provide appropriate care such as allergies, adverse reactions, current medical problems (diagnosis), test results and procedures alongside a list of the medication that a patient is currently taking. The HL7 CDA standard is the most appropriate standard to use for the exchange of clinical documents that specifies the structure and semantics of clinical documents for the purpose of exchange of information between healthcare providers.
This standard specifies a national dataset for procedures. The dataset is then extended to a technical specification and a HL7 CDA template (See Appendix 1 for detailed information on the CDA standard and templates). A HL7 CDA template for procedures can be reused in different document types such as national patient summaries or discharge summaries.

2. Background

The National Standard for a Procedure Dataset including a Clinical Document Architecture specification presented in this document was developed as per HIQA’s current legislative remit under the Health Act 2007 and subsequent amendments to the Act. This gives HIQA a remit to set standards for the HSE, the Child and Family Agency (Tusla) and services funded by the HSE and to monitor compliance with those standards. Under the Health Act 2007, HIQA currently has a statutory remit to develop standards, evaluate information and make recommendations about deficiencies in health information. The responsibilities of HIQA in this regard are outlined in the following sections of the Act:

- Section 8(1)(i): to evaluate available information respecting the services and the health and welfare of the population
- Section 8(1)(j): to provide advice and make recommendations to the Minister for Health and the HSE about deficiencies identified by HIQA in respect of the information referred to in paragraph (i)
- Section 8(1)(k): to set standards as HIQA considers appropriate for the HSE and service providers respecting data and information in their possession in relation to services and the health and welfare of the population.
- Section 8(1)(l): to advise the Minister for Health and the HSE as to the level of compliance by the HSE and service providers with the standards referred to in paragraph (k).

Under Section 8(1)(k) of the Health Act 2007, HIQA is charged with setting standards for health information. This includes standards for the communication of
health information between healthcare providers. To date HIQA has published several standards in this regard namely for:

- National Standards for Diagnosis (2016)\(^{(4)}\)
- National Standards for Adverse Reaction (2016)\(^{(5)}\)
- General Practice Messaging Standard (2014)\(^{(6)}\)
- National Standards for Patient Discharge Summary Information (2013) \(^{(7)}\)
- National Standard Demographic Dataset and Guidance for use in health and social care settings in Ireland (2013) \(^{(8)}\)
- National Standards for Patient Referral Information (2011) \(^{(9)}\)

3. **Purpose**

The exchange of standardised electronic documents such as shared patient summaries and other document types like ePrescription documents are key building blocks for interoperability between eHealth systems. The purpose of this standard is to define a minimum dataset for a procedure and to define a HL7 CDA specification based on the dataset that can be reused throughout different clinical document types such as referrals and discharge summaries. This is a minimum dataset that could be displayed in a patient summary or a national summary care record.

4. **Benefits**

The development of a standard dataset and a corresponding CDA template is an important step towards improving the delivery of safe, person-centred care. The development of CDA templates that are common across different document types reduces the work effort in creating new datasets each time an electronic clinical document is designed and needs to be shared. Common CDA templates for patient summaries can be used in eHealth systems. eHealth systems can enhance the
National Standard for a Procedure Dataset including a Clinical Document Architecture specification

Health Information and Quality Authority

quality, accessibility and efficiency across all healthcare services through the secure, timely, accurate and comprehensive exchange of clinical and administrative data offering a number of benefits including:

- better and safer care
- improved integration and sharing of health information to enable patient-centred integrated care
- more cost-effective delivery of health care
- more efficient national planning
- improved research through the provision of more timely, and higher quality information
- reduction in medication errors through ePrescribing
- more timely access by health professionals to the right medical information at the right time
- improved support for patient self-management.

5. **Methodology**

The dataset for procedures was developed after analysis of several datasets developed in other jurisdictions. In Australia, the National eHealth Transition Authority (NEHTA), now named the Australian Digital Health Agency, published a detailed specification to record information about procedures that is required to support direct clinical care of an individual. Procedure datasets from two of the main standards developments organisations for communication standards, OpenEHR and HL7 were also included in this analysis. The standards and specifications that were analysed include:

- OpenEHR, Archetypes Procedures, Clinical Knowledge Manager (11)
- HL7 FHIR Standard Procedures, DSTU2 (12)
Relevant datasets previously developed by HIQA such as the demographic dataset, referrals and discharge summary datasets were also reviewed and reused where appropriate. A final dataset was developed in collaboration with HIQA’s eHealth Standards Advisory Group.

The dataset was then extended into a technical specification and developed into a HL7 CDA template. Key international CDA implementation guides were reviewed to inform the CDA standard including:

- HL7 Implementation Guide for CDA Release 2: Consolidated CDA Templates for Clinical Notes DSTU R2 (2014)\(^{(15)}\)

This standard used the epSOS specification for the development of the procedure CDA template. epSOS was a large European initiative to facilitate cross-border transfer of electronic patient summary documents and electronic prescriptions and electronic dispensing. The epSOS project reused information and specifications from other leading organisations who are considered experts in the area of CDA implementations. The epSOS project reused the HL7 CDA Standard, the HL7 clinical care document (CCD) specification and the Integrating the Healthcare Enterprise, Patient Care Coordination Technical Framework (IHE PCC).

5.1 Targeted consultation

The National Standard for a Procedure dataset including a Clinical Document Architecture specification was developed in conjunction with the members of HIQA’s eHealth Standards Advisory Group and a five week targeted consultation was undertaken. A consultation feedback form was included which outlined five questions
(see Appendix 3) and a general comments section. The consultation form was made available on HIQA’s website along with the draft standards.

In order to engage with as many people as possible, targeted emails were sent to 45 stakeholders inviting them to participate in the consultation. Information about the consultation was also circulated to the Council of Clinical Information Officers⁴.

A total of seven submissions were received, submitted by email and online correspondance. Five respondents completed the online form and two respondents submitted their comments by email. Of the seven submissions, five were submitted on behalf of organisations and two were submitted in a personal capacity. Appendix 3 outlines the organisations that made a submission.

Each submission was read in its entirety and broken down into general comments and individual items that directly relate to the data items in the standard. Appendix 3 provides a review of the qualitative comments made.

6. Model for procedures

This section illustrates the model for a procedure. Section 7 describes the dataset for a procedure and section 8 will specify the CDA procedures template. The data model for a procedure consists of the patient and the procedures classes. A patient can have zero to many procedures. Figure 1 below outlines a high-level data model for a patient’s procedures.

Figure 1. Model for a procedure

![Model for a procedure diagram](chart.png)

⁴ The Council of Clinical Information Officers has been established to provide clinical governance to the delivery of eHealth solutions across the Irish Healthcare system. Its role is primarily as an advisory group, with primary governance oversight provided by the Office of the CIO and the eHealth Ireland board.
7. Dataset for procedures

A procedure is defined as a clinical activity carried out for the therapeutic, evaluative, investigative, screening or diagnostic purposes. A procedure dataset is essential to provide information about an individual’s procedures. If all healthcare providers use the same data model and dataset then information about procedures can be shared. Each of the classes and associated attributes are described in the dataset in Table 1 below which define the name, definition, optionality and usage of each data element.
7.1 Procedure Dataset

Table 1. Procedure Dataset

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Optionality</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Procedure name</td>
<td>The name of the procedure (to be) performed.</td>
<td>Mandatory</td>
<td>A coded value for the name of the procedure. Examples include an Appendectomy or Caesarean Section.</td>
</tr>
<tr>
<td>1.2 Description</td>
<td>Narrative description about the procedure.</td>
<td>Optional</td>
<td>Captures a narrative description of the procedure. Examples can include description about performance, findings, failed attempt or cancellations.</td>
</tr>
<tr>
<td>1.3 Urgency</td>
<td>The urgency of the procedure.</td>
<td>Optional</td>
<td>Describes details about the urgency of the procedure. This free text data element is currently a placeholder for further structured data that is as yet undefined. For example, routine, urgent, immediate.</td>
</tr>
<tr>
<td>1.4 Body site</td>
<td>Identification of the body site for the</td>
<td>Optional</td>
<td>This element may be present to</td>
</tr>
</tbody>
</table>
Procedure Dataset

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Required?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>Procedure identifier.</td>
<td></td>
<td>Indicates the target site of the procedure. This free text data element is currently a placeholder for further structured data that is as yet undefined about the procedure.</td>
</tr>
<tr>
<td>1.5 Outcome</td>
<td>Outcome of procedure performed.</td>
<td>Optional</td>
<td>A coded value for the result of the procedure. Suggested codes could include: Successful, Unsuccessful, and Partially Successful.</td>
</tr>
<tr>
<td>1.6 Complication</td>
<td>Details about any complication arising from the procedure.</td>
<td>Optional</td>
<td>Details about any complication arising from the procedure. Could be linked to a diagnosis or rules such as report a complication within 30 days of the completion of a procedure.</td>
</tr>
<tr>
<td>1.7 Date/time</td>
<td>The date and or time on which the procedure was or is intended to be performed.</td>
<td>Optional</td>
<td>The date and time (or both) of the procedure.</td>
</tr>
<tr>
<td>1.8 Multimedia</td>
<td>Multimedia representation of a performed procedure.</td>
<td>Optional</td>
<td>Inclusion of any multimedia file to support the recording of the procedure, for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>为例，一份视频或手术示意图。</td>
<td>example, a link to a video of the procedure performed or a drawing of the wound or surgery.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.9 Comment</td>
<td>Additional narrative about the activity or care pathway step not captured in other fields.</td>
<td>Optional</td>
<td>General comments about the procedure including any instructions that may have been given to the patient.</td>
</tr>
<tr>
<td>1.10 Device</td>
<td>Structured information about any device used during the procedure.</td>
<td>Optional</td>
<td>This data element describes details about the device that was used during the procedure. This free text data element is currently a placeholder for further structured data that is as yet undefined.</td>
</tr>
<tr>
<td>1.11 Information provided by or sourced by</td>
<td>The individual who provides information to the healthcare practitioner.</td>
<td>Optional</td>
<td>This could be the patient or a relative or carer of the patient.</td>
</tr>
<tr>
<td>1.12 Performed by</td>
<td>The healthcare practitioner who performs the procedure.</td>
<td>Optional</td>
<td>This field refers to the type of healthcare practitioner who performs the procedure.</td>
</tr>
<tr>
<td>1.13 Location performed</td>
<td>The place where the procedure was or is performed.</td>
<td>Required</td>
<td>The name of the organisation where the procedure was or is being performed.</td>
</tr>
</tbody>
</table>

This section defines the CDA specification for a procedure and is based on the dataset defined in 7.1. Section 8.1 provides guidance on how to interpret the CDA procedure specification. Section 8.2 details the CDA standard for procedures. The background information on the CDA is provided in Appendix 1.

8.1 Description of the CDA specification tables

The specification is defined using a table structure as illustrated in Table 2. The purpose of each of the columns is explained in this section.

Table 2. Attribute Table for defining CDA Documents, Sections and Entries

<table>
<thead>
<tr>
<th>Num</th>
<th>Data element</th>
<th>CDA xpath expression</th>
<th>Optionality/Cardinality</th>
<th>HL7 v3 Data Type</th>
<th>Vocabulary</th>
</tr>
</thead>
</table>

A. The ‘Number’ column

The ‘Num’ or ‘Number’ column contains a unique number that identifies the data element and is used for reference purposes.

B. The ‘Data element’ column

The data element defines the name of the field.

C. The ‘CDA xpath expression’ column

The CDA xpath expression column is used to search through an XML document and locate and extract information from the nodes (any part of the document, such as an element or attribute) in that document. This is used to help in the
implementation of a CDA specification and corresponds to the XML representation required for implementation.

D. The ‘Optionality/Cardinality (Opt/Card)’ column

The optionality, as well as the cardinality information is associated with each data elements in the table. The optionality used for this specification is based on the optionality included in the epSOS specification. The optionality descriptions and acronyms are included in Table 3 below.

Table 3. Optionality used in the CDA Diagnosis specification

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Required - the mapped CDA element shall be present and shall not contain the nullFlavor attribute.</td>
</tr>
<tr>
<td>RNFA (or R use NullFlavor)</td>
<td>Required Null Flavor Allowed - the mapped CDA element shall be present and it may contain the nullFlavor attribute. In some cases, the recommended nullFlavor value is also indicated.</td>
</tr>
<tr>
<td>O</td>
<td>Optional - the mapped CDA element may be omitted unless required by the CDA and or by the template specifications.</td>
</tr>
<tr>
<td>NA</td>
<td>Not applicable since the data element is not applicable in the respective document.</td>
</tr>
</tbody>
</table>

The cardinality rules that may be used for sections and data elements are described in Table 4.

Table 4. Cardinality used in the CDA Diagnosis specification

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
</table>

22
For example, the cardinality of a Patient Identifier, for example the Individual Health Identifier is [1...1]. This is a one-to-one relationship which means that we require the Patient Identifier. A cardinality of [0...*] means that there are optionally many (more than one) additional identifiers.

E. The ‘HL7 v3 Data Type’ column

Each data element has a datatype associated with it. This column indicates the HL7 v3 data type that must be used for the field. Information about HL7v3 data types may be found in Appendix 4.

F. The ‘Vocabulary’ column

The vocabularies or terminologies that are used throughout this specification include epSOS value sets and SNOMED CT.
8.2 CDA Template for Procedure

Table 5. CDA level 3 templates for procedure (epSOS CDA template Procedure Entry 1.3.6.1.4.1.19376.1.5.3.1.4.19)

<table>
<thead>
<tr>
<th>Number</th>
<th>Data element</th>
<th>CDA XPath expression</th>
<th>Optionality/Cardinality</th>
<th>HL7 V3 Data Type</th>
<th>Vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Procedure name</td>
<td>entry/procedure[templateId/@root=’1.3.6.1.4.1.19376.1.5.3.1.4.19’]/code/@display Name</td>
<td>RNFA [1..1]</td>
<td>CD</td>
<td>See Appendix 5, value set 1.</td>
</tr>
<tr>
<td>1.2</td>
<td>Description</td>
<td>entry/procedure[templateId/@root=’1.3.6.1.4.1.19376.1.5.3.1.4.19’]/code/@display Name</td>
<td>Optional [0..1]</td>
<td>ST</td>
<td>N/A</td>
</tr>
<tr>
<td>1.3</td>
<td>Urgency</td>
<td>entry/procedure[templateId/@root=’1.3.6.1.4.1.19376.1.5.3.1.4.19’]/value/@code</td>
<td>Optional [0..1]</td>
<td>ST</td>
<td>N/A</td>
</tr>
<tr>
<td>1.4</td>
<td>Body site</td>
<td>entry/procedure[templateId/@root=’1.3.6.1.4.1.19376.1.5.3.1.4.19’]/text/reference/@value</td>
<td>Optional [0..1]</td>
<td>ST</td>
<td>N/A</td>
</tr>
<tr>
<td>1.5</td>
<td>Outcome</td>
<td>entry/procedure[templateId/@root=’1.3.6.1.4.1.19376.1.5.3.1.4.19’]/value/@code</td>
<td>Optional [0..1]</td>
<td>CD</td>
<td>See Appendix 5, value set 2.</td>
</tr>
<tr>
<td>1.6</td>
<td>Complication</td>
<td>entry/act[templateId/@root=’’</td>
<td>Optional</td>
<td>CD</td>
<td>See Appendix 5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1.3.6.1.4.1.19376.1.5.3.1.4.19]/text/reference/@value</td>
<td>[0..*]</td>
<td>value set 3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date/time</td>
<td>entry/procedure[templateId/@root='1.3.6.1.4.1.19376.1.5.3.1.4.19']/effectiveTime/low</td>
<td>Optional [0..1]</td>
<td>TS</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Multimedia</td>
<td>entry/procedure [templateId/@root='1.3.6.1.4.1.19376.1.5.3.1.4.19']/text/reference/@value</td>
<td>Optional [0...*]</td>
<td>ED</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td><text><reference value='#comment'/></text></td>
<td>Optional [0..1]</td>
<td>ST</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>entry/procedure [templateId/@root='1.3.6.1.4.1.19376.1.5.3.1.4.19']/value/@code</td>
<td>Optional [0...*]</td>
<td>CD</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Location performed</td>
<td>Custodian/Organisation/name</td>
<td>Required [1..1]</td>
<td>ON</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1. Clinical Document Architecture Overview

1. Clinical Document Architecture (CDA) standard

The HL7 CDA standard is an internationally recognised standard which has been implemented in many countries. The CDA standard facilitates the exchange and unambiguous interpretation of clinical documents such as prescriptions, referrals and discharge summaries. CDA supports a combination of free text for human readability and adds structure and coding to the document to enable machine processing. The CDA standard can be processed by unsophisticated applications making it easy to render in web browsers so that end-users can view the clinical document. The standard can also be integrated into clinical information systems so the data can be reused.

2. HL7 CDA characteristics

The international standards organisation Health Level Seven (HL7) developed the CDA standard to facilitate the exchange and unambiguous interpretation of clinical documents such as prescriptions, referrals and discharge summaries. CDA supports a combination of free text for human readability and adds structure and coding to the document to enable machine processing.

HL7 defines clinical documents as historical, human readable healthcare records that combine data and free text. The following list describes the characteristics of an electronic clinical document as defined by the CDA standard:

- Persistent - A clinical document continues to exist in an unaltered state, for a period defined by local and regulatory requirements.
- Stewardship - A clinical document is maintained by an organisation entrusted with its care.
- Potential for authentication - A clinical document is a collection of information that is intended to be legally authenticated.
- Context - A clinical document establishes the default context for its content.
- Wholeness - Authentication of a clinical document applies to the whole and does not apply to portions of the document without the full context of the document.
- Human readability - A clinical document is human readable.

CDA allows for different levels of detail to be added to clinical documents. Level one enable implementers to develop documents that are displayed and presented to clinicians in a readable format but provide very little coded information to support machine processing of the document. More complex documents can be created that are coded for machine processing using level two and three. Level one is considered relatively easy to implement and will ensure that clinical documents are brought up to a standard format. Over time, it is possible for implementers to add greater levels of sophistication by incrementally adding in more structure and coding to the clinical document. This feature is referred to as the ‘migration path’ and provides a flexible approach to CDA implementation.

Several countries have adopted CDA as the basis for their standards-based health information exchange architecture. Countries who have undertaken CDA projects include Australia, Canada, Germany, Greece, Finland, Japan, UK and US. Implementers can refine the generic CDA specification by defining the structure and coding requirements to meet their local requirements.

In summary, the key benefits of CDA documents are listed below. CDA documents:

- are machine computable and human readable
- provide a standardised display of clinical information without loss of clinical meaning
- provide assurance of clinical quality and safety more effectively than message-based interfaces by storing and displaying the clinical data as entered by the clinician
- support legal confirmation by the clinician (requiring that a document has been signed manually or electronically by the responsible individual)
- can be processed by unsophisticated applications (displayed in web browsers)
- provide a number of levels of compliance to assist with technical implementation and migration.

3. **CDA document structure**

A CDA clinical document is divided into a header and a body. The purpose of the header is to hold metadata about the clinical report which set the context for the document, enable clinical document exchange across and within institutions, and facilitate clinical document management. The header also facilitates compilation of an individual patient's clinical documents into a lifetime electronic patient record. The header identifies and classifies the document and provides information on the authentication, the clinical visit, the patient, and the involved providers.

The purpose of the body of a CDA document is to carry the clinical report created by the healthcare practitioner. As previously mentioned, CDA allows for different levels of detail to be added to clinical documents (See Figure 2). Level one implementations have a coded document header and the human readable content is added to the body of the document as text. When implementing levels two and three, structured information is added by identifying CDA concepts known as sections and entries. Sections are used to identify headings within the clinical document and entries are used to identify lower level detail. In the
context of this specification there is one section identified, the medication section and each prescription item is implemented as an entry.

Sections can be coded using a vocabulary like LOINC or SNOMED CT. When the body of the document is structured using sections, and those sections are coded, HL7 would call that a level 2 CDA document. A section may have a number of entries. Entries are machine readable representations of the clinical content and constitute a level 3 CDA document. An example of coding at level 3 could be for a ‘prescription item’. When the body of the document is structured using entries, and those sections are coded, HL7 would call that a level 3 CDA document.

Figure 2: HL7 CDA document levels (Adapted from epSOS)

4. **CDA Templates**

The HL7 CDA object model (RMIM) is very generic. To use the CDA model for a specific use case such as a discharge summary document, it is necessary to use HL7 templates. HL7 templates are constraints on the CDA object model. This means that they narrow the scope of the generic model. For example, a generic model for the identification of a patient may state that a patient must have one or more identifications. However, a template could be defined to state that a patient must have exactly one national patient identifier. HL7 templates are documented in an implementation guide.
Template definitions can be generated at the document-level, section-level and entry-level such as patient identification, provider organisation or an observation entry respectively.

HL7 templates are required to have a templateID indicating that a document conforms to both the CDA generic model and the constraints specified in an implementation guide. The templateID, which could be an OID or locally defined, is used to indicate which template is being used.

Each template has a set of metadata to describe the purpose and use of the template, allowing templates to be stored in repositories which can be queried. This makes it possible for templates to be shared internationally.
Appendix 2. Technical specification

Table 1. Technical Specification for a procedure

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Optionality</th>
<th>Cardinality</th>
<th>Data Type</th>
<th>Coding Systems and Value Domains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Procedure name</td>
<td>The name of the procedure (to be) performed.</td>
<td>Mandatory</td>
<td>1..1</td>
<td>Coded Text</td>
<td>See Appendix 5, value set 1. This includes epSOSProcedures 2.16.840.1.113883.6.96.</td>
</tr>
<tr>
<td>1.2 Description</td>
<td>Narrative description about the activity or care pathway step for the identified procedure.</td>
<td>Optional</td>
<td>0..1</td>
<td>Text</td>
<td>N/A</td>
</tr>
<tr>
<td>1.4 Urgency</td>
<td>The urgency of the procedure.</td>
<td>Optional</td>
<td>0..*</td>
<td>Text</td>
<td>N/A</td>
</tr>
<tr>
<td>1.5 Body site</td>
<td>Identification of the body site for the procedure.</td>
<td>Optional</td>
<td>0..1</td>
<td>Text</td>
<td>N/A</td>
</tr>
<tr>
<td>1.6 Outcome</td>
<td>Outcome of procedure performed.</td>
<td>Optional</td>
<td>0..1</td>
<td>Codeable Text</td>
<td>See Appendix 5, value set 2.</td>
</tr>
<tr>
<td>1.7 Complication</td>
<td>Details about any complication arising from the procedure.</td>
<td>Optional</td>
<td>0..*</td>
<td>Codeable Text</td>
<td>See Appendix 5, value set 3.</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>----------</td>
<td>------</td>
<td>---------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>1.8 Date/time</td>
<td>The date and or time on which the procedure is intended to be performed.</td>
<td>Optional</td>
<td>0..1</td>
<td>DateTime</td>
<td>N/A</td>
</tr>
<tr>
<td>1.9 Multimedia</td>
<td>Multimedi representation of a performed procedure.</td>
<td>Optional</td>
<td>0..*</td>
<td>Encapsulated Data</td>
<td>N/A</td>
</tr>
<tr>
<td>1.10 Comment</td>
<td>Additional narrative about the activity or care pathway step not captured in other fields.</td>
<td>Optional</td>
<td>0..1</td>
<td>Text</td>
<td>N/A</td>
</tr>
<tr>
<td>1.11 Device</td>
<td>Structured information about any device used during the procedure.</td>
<td>Optional</td>
<td>0..*</td>
<td>CodedText</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1.12 Subject: Refer to common header templates document

1.13 Performed/Identified By: Refer to common header templates document

1.14 Information Provided by/Sourced by: Refer to common header templates document

1.15 Location Performed: Refer to the name of custodian in CDA standard
Appendix 3. Statement of Outcomes

A total of seven submissions were received during the consultation process. HIQA welcomed all submissions and would like to thank all those who contributed. The organisations that made submissions to the targeted consultation include:

- Complete GP Ltd
- National General Practice Information Technology Group
- IMS Maxims
- DCU School of Nursing and Human Science (ICNP User Group) in consultation with the Health Service Executive (HSE) EA National Data Dictionary Group
- Irish Pharmacy Union.

Submissions were also made by individuals in a personal capacity. All submissions have received an acknowledgement of their contribution. All submissions to the consultation informed the development of the final national standard.

3.1 Changes to the Procedures Draft Standard

Each submission received was read in its entirety, analysed and a decision was made to either include or exclude responses to the standard. A rationale for inclusion or exclusion of a response was given. The responses received were identified as a qualitative comment or as feedback that related to the individual data items of the dataset and CDA specification.

3.2 Changes to Dataset and CDA specification
There were no changes to the procedures draft standard based on the feedback from respondents as evidenced by the feedback from consultation questions below.

Consultation Question 1
Are there benefits in having a standardised Procedures Dataset and Clinical Document Architecture standard and, if so, what are the main benefits?

Overall respondents agreed that there were clear benefits in introducing a standardised Procedures Dataset and Clinical Document Architecture standard.

"A standardised procedures dataset will assist in the establishment of a summary care record."

"Yes. Safer care, Improved sharing of information, Consistency of data, Improved quality of data, Improved data analysis, Improved interpretation of information by health professionals and Improved patient care."

Consultation Question 2
Have the appropriate classes been included in the Procedures data model?

Overall respondents agreed that there were appropriate classes for the procedures data model.

"Consultation with HSE EA National Data Dictionary group would indicate that this standard provides the core classes and associated attributes as outlined in Table 1 of the document. HSE is progressing towards a National Data Dictionary, as this document has analyzed and referenced specific resources such NETHA Detailed Clinical Model Specification for procedure we anticipate that the classes value and attributes listed will adequately meet the anticipated requirements."

Consultation Question 3
Have all of the appropriate data items been included in the procedures dataset? Would you leave out any of the data items listed? Would you suggest additional data items?
Overall respondents agreed that there were appropriate data items for the procedures data model.

"Yes we believe that the appropriate data items have been included."

Consultation Question 4
Do the explanations provided in Table 1 of the consultation document adequately explain each of the data items? If not, please suggest improvements?

Overall respondents agreed that there were appropriate definitions for the procedures data model.

"Yes we consider that the appropriate explanations on the data items have been included. We note the reference to device is currently a free text place holder and will evolve for structure data in time."

Consultation Question 5
Are there any alterations needed for the clinical document architecture specification? If so, please suggest improvements?

Overall respondents agreed that there were no specific alterations to the CDA specification. There were suggestions to move, in the future, towards other standards such as the most recent HL7 standard, HL7 FIHR which is currently a draft standard for trial use and offers a lot of flexibility.
Appendix 4. HL7 v3 Data Type

Each data element has a data type associated with it. A description of the HL7 datatypes used in the diagnosis CDA template is outlined in Table 1.

Table 1. HL7 v3 Data Types

<table>
<thead>
<tr>
<th>HL7 v3 Data Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Postal Address</td>
<td>Home or Office Address. A sequence of address parts.</td>
</tr>
<tr>
<td>ANY</td>
<td>Any</td>
<td>Defines the basic properties of every data.</td>
</tr>
<tr>
<td>CD</td>
<td>Concept Descriptor</td>
<td>A concept descriptor represents any kind of concept usually by giving a code defined in a code system. A concepts descriptor can contain the original text or phrase that served as the basis of the coding and one or more translations into different coding systems.</td>
</tr>
<tr>
<td>CE</td>
<td>Coded with Equivalents</td>
<td>Coded data that consists of a coded value (CV) and optionally coded values from other coding systems that identify the same concept. Used when alternative codes may exist.</td>
</tr>
<tr>
<td>CS</td>
<td>Coded Simple Value</td>
<td>Coded data in its simplest form, where only the code is not predetermined. The code system and code system version is fixed by the context in which the CS value occurs. CS is used for coded attributes that have a single HL7-defined value set.</td>
</tr>
<tr>
<td>ED</td>
<td>Encapsulated Data</td>
<td>Data that is primarily intended for human interpretation or for further machine processing outside the scope of HL7. This includes unformatted or formatted written language,</td>
</tr>
</tbody>
</table>
multimedia data or structured information in as defined by a different standard.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EN</td>
<td>Entity Name</td>
<td>A name for a person, organisation, place or thing. A sequence of name parts, such as first name or family name, prefix, or suffix.</td>
</tr>
<tr>
<td>II</td>
<td>Instance Identifier</td>
<td>An identifier that uniquely identifies a thing or an object. Examples are object identifier for HL7 RIM objects, medical record number, order id, service catalogue item id. Vehicle Identification Number (VIN), and so on. Instance Identifiers are defined based on ISO object identifiers.</td>
</tr>
<tr>
<td>IVL</td>
<td>Interval</td>
<td>A set of consecutive values of an ordered based data type. Any ordered type can be the basis of an interval: it does not matter whether the base type is discrete or continuous. If the base data type is only partially ordered, all elements of the interval must be elements of a totally ordered subset of the partially ordered data type.</td>
</tr>
<tr>
<td>ON</td>
<td>Organisation Name</td>
<td>A name for an organisation. A sequence of name parts.</td>
</tr>
<tr>
<td>PN</td>
<td>Person Name</td>
<td>A name for a person. A sequence of name parts such as first name, family name, prefix, or suffix. A name part is a restriction of entity name part that only allows those entity name part qualifiers applicable to person names. Since the structure of entity name is mostly determined by the requirements of person name, the restriction is very minor. This data type is of mixed content.</td>
</tr>
<tr>
<td>PQ</td>
<td>Physical Quantity</td>
<td>A dimensioned quantity expressing the result of measuring.</td>
</tr>
</tbody>
</table>
| **RTO** | **Ratio** | A quantity constructed as the quotient of a
<table>
<thead>
<tr>
<th>SC</th>
<th>Character String with Code</th>
<th>The character string that optionally may have a code attached. The text must always be present if a code is present. The code is often a local code.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Character String</td>
<td>The character string data type stands for text data, primarily intended for machine processing (for example, sorting, querying, indexing). This is used for names, symbols and formal expressions.</td>
</tr>
<tr>
<td>TEL</td>
<td>Telecommunication Address</td>
<td>A telephone number (voice or fax), email address, or other locator for a resource mediated by telecommunication equipment. The address is specified as a Universal Resource Locator (URL) qualified by time specification and use codes that help in deciding which address to use for a given time and purpose.</td>
</tr>
<tr>
<td>TS</td>
<td>Timestamp</td>
<td>A quantity specifying a point on the axis of natural time. A point in time is most often represented as a calendar expression. Note: An IVL TS (Interval Timestamp) has to be fully formed, whereas a regular timestamp can be truncated.</td>
</tr>
</tbody>
</table>
Appendix 5. Value sets

The following tables provide exemplar values for these value sets.

Value Set 1: Procedure Name

The suggested value set that can be used to indicate the procedure name is (get OID from SNOMED). This includes epSOSProcedures 2.16.840.1.113883.6.96.

Value Set 2: Outcome

The following suggested value set can be used to indicate the outcome of the procedure. The source Code System is SNOMED CT 2.16.840.1.113883.6.96.

Table 1. Outcome values

<table>
<thead>
<tr>
<th>Code</th>
<th>Descriptor/Display Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>385669000</td>
<td>Successful</td>
<td>SNOMED CT</td>
</tr>
<tr>
<td>385671000</td>
<td>Unsuccessful</td>
<td>SNOMED CT</td>
</tr>
<tr>
<td>385670004</td>
<td>Partially Successful</td>
<td>SNOMED CT</td>
</tr>
</tbody>
</table>

Value Set 3: Complication

The suggested value set that can be used to indicate the complication of the procedure is (get OID from SNOMED) taken from Condition/Problem/Diagnosis Codes.
References

